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With its tremendous success in many machine learning and pattern recognition tasks, deep learning, as one type of data-driven
models, has also led to many breakthroughs in other disciplines including physics, chemistry and material science. Nevertheless,
the supremacy of deep learning over conventional optimization approaches heavily depends on the huge amount of data collected
in advance to train the model, which is a common bottleneck of such a data-driven technique. In this work, we present a
comprehensive deep learning model for the design and characterization of nanophotonic structures, where a self-supervised
learning mechanism is introduced to alleviate the burden of data acquisition. Taking reflective metasurfaces as an example, we
demonstrate that the self-supervised deep learning model can effectively utilize randomly generated unlabeled data during
training, with the total test loss and prediction accuracy improved by about 15% compared with the fully supervised counterpart.
The proposed self-supervised learning scheme provides an efficient solution for deep learning models in some physics-related
tasks where labeled data are limited or expensive to collect.
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1 Introduction

Nanophotonics, the study of light-matter interactions at the
nanoscale, enables us to control the flow of light within the
dimension far below the optical wavelength. It spawns a
plethora of novel applications, such as miniaturized flat op-
tics [1], perfect absorption [2], sub-diffraction-limited ima-
ging [3] and extreme light concentration [4]. In all these
applications, artificially designed structures play a crucial
role in engineering the light-matter interactions [5,6]. Con-
ventionally, such artificial structures as metamaterials/me-

tasurfaces, photonic crystals and plasmonic nano-structures
are designed based on expert experience. Certain empirical
templates are used as initial guess, from which a limited set
of design parameters are adjusted to optimize the design,
either by analytical models, semi-analytical models or nu-
merical simulations. To overcome this inefficient trial-and-
error procedure, inverse design methods are proposed to
better exploit larger degrees of freedom in the design space
[7]. However, traditional inverse design approaches, either
gradient-based or gradient-free, are still restricted in runtime
speed, because the iterative optimization steps in these al-
gorithms rely on numerical calculations to evaluate the cost
function.
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Recently, in light of the revolutionary revival of deep
learning and its unprecedented success in machine learning
and pattern recognition tasks [8], researchers are actively
seeking solutions from deep learning for the challenging
tasks in other disciplines, including materials science [9],
chemistry [10], laser physics [11], particle physics [12] and
quantum mechanics [13]. As a data-driven method, deep
learning allows a computational model composed of multiple
layers of processing unit to learn multiple levels of abstrac-
tion in given data, thus circumventing a direct interaction
with human intervention or underlying physical laws in a
conventional optimization problem. For the study of nano-
photonics, on one hand, well-trained deep learning models
can be used as a fast simulator to predict the optical response
of a structure. On the other hand, it can also function as an
optimization tool for the inverse design of structures from
given requirements in various scenarios, including topolo-
gical photonics [14], integrated silicon photonics [15,16],
color generation from nanostructures [17,18], metamaterials/
metasurfaces [19-23], plasmonics [24-29], and photonic
crystals [30].
At present, most of the studies on deep learning for na-

nophotonics are developed under the supervised learning
routine, where enormous training data comprising pairs of
photonic designs and corresponding optical responses are
collected in advance. The collection of training data requires
numerical simulations or experimental measurements of in-
dividual structures, which remains the bottleneck of training
deep learning models, since the quantity of training data is
crucial in data-driven models to guarantee their perfor-
mances. To alleviate the burden of data acquisition, un-
supervised learning or semi-supervised learning strategies
can be adopted to assist the model in discovering patterns in
data [31], where the unlabeled data, usually empirical design
patterns for nanophotonic structures, can be conveniently
obtained with little effort [23]. However, the unlabeled data,
which is also collected beforehand and fixed during training,
need to be carefully chosen with appropriate quantities to
balance training accuracy and efficiency. Other solutions to
reduce the dependence on labeled data include physics-
informed modeling [32] or transfer learning [33], resorting to
learning from physical laws or other relevant tasks. Never-
theless, these approaches rely on explicit embedding of
physical laws or surrogate learning tasks, which are not often
applicable to a general end-to-end deep learning model for
specific photonics structures like metamaterials or meta-
surfaces.
In this paper, we propose an efficient deep learning model

for the design and characterization of nanophotonic struc-
tures with limited availability of labeled data. The key idea is
to employ a self-supervised learning strategy, where un-
labeled data are generated in an online manner and fed to the
model in company with pre-collected labeled data during the

training process. The training data contain empirical design
geometries like arc, bowtie, cross, split ring, H-shape, rec-
tangle, L-shape and ellipse, which are represented as two-
dimensional images in general with randomly varied design
parameters for each geometry. For instance, the arm width,
length and rotation angle are varied for a cross resonator.
With online training, some of the training data are not pre-
defined but dynamically supplemented as unlabeled data
when the training proceeds, enabling the model to learn from
human experience as much as possible. After the model is
fully trained, it can predict the optical response of a photonic
structure in arbitrary shapes and retrieve possible designs
from a given optical response at the same time. The dyna-
mically generated unlabeled designs, albeit not able to pro-
vide direct supervision on the optical response, can help to
significantly improve the prediction accuracy via deliber-
ately designed model architecture and loss functions. In a
comparative study, by introducing the self-supervised
learning mechanism, the model performance surpasses its
counterparts with either fully supervised or semi-supervised
learning strategy. Leveraging only a limited number of la-
beled data and human experience on empirical designs, the
proposed deep learning model creates a new framework for
data-efficient design and characterization of nanophotonic
structures in arbitrary geometries.

2 Model architecture

The proposed deep learning model with the self-supervised
learning mechanism is schematically shown in Figure 1(a).
The basic framework of the model is a mutant of a variational
auto-encoder (VAE), comprising an encoder and a decoder to
realize both the forward prediction of the optical responses of
a certain structure and the inverse design of nanophotonic
structures from predesignated optical properties. The nano-
photonic structure under investigation is metasurfaces,
which are two-dimensional metamaterials with thickness of
only a few tens of nanometers [34,35]. By tailoring the
geometry of the building blocks of metasurfaces and en-
gineering their spatial distribution, we can realize the full
control of the amplitude, polarization, phase and trajectory of
light. Many optical functionalities have been demonstrated
based on metasurfaces, including ultra-thin lenses [36-39],
wave plates [40,41], beam deflection [42,43] and holograms
[44,45]. Metasurfaces have also been used to manipulate
near-field evanescent waves [46-50].
The designed metasurface works in the reflective config-

uration, which is composed of a continuous metallic ground
plane at bottom, a dielectric spacer in the middle and metallic
resonators on top. Aiming at an operating frequency in the
mid-infrared region (from 40 to 100 THz), we choose the
thickness of the resonator and spacer to be 50 and 100 nm
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respectively, and a lattice constant of 2 μm. The design ob-
ject is the top resonator. It is represented as a two-
dimensional binary image with pixels of 64×64, in which 1
and 0 represent metal and air, respectively. We consider eight
representative geometries for the resonator, including arc,
bowtie, cross, split ring, H-shape, rectangle, L-shape and
ellipse, as shown in the inset of Figure 1(a). Due to the
optical reciprocity, we only need to consider one cross-
polarization. Therefore, the optical response of the meta-
atom is fully described by three reflection spectra, namely,

Rxx (x-polarization in and x-polarization out), Ryy (y-polar-
ization in and y-polarization out), and Rxy (x-polarization in
and y-polarization out). Each spectrum is discretized into 61
data points in a step of 1 THz.
Generally, the model follows a VAE configuration, where

the encoder compresses the input design patterns into a latent
space and then the decoder reconstructed the input design
from the latent variable sampled from the latent space con-
ditioned on the corresponding reflection spectra [23,51]. To
holistically optimize the forward prediction and inverse de-

Figure 1 (Color online) (a) The proposed deep learning model with self-supervised learning mechanism for both the forward prediction and inverse design
of nanophotonic structures. The network architecture of encoder (b) and decoder (c). Conv stands for the convolutional block containing three convolution
operations with kernel size of 1×1, 3×3 and 1×1, respectively, each followed by a batch-normalization layer. Pool denotes the pooling layer to halve the lateral
dimension while U denotes the up-sampling layer to double the lateral dimension. Fc stands for the fully connected layer.
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sign capability, the model is trained in an end-to-end manner
by minimizing the following loss terms. Denoting the input
design pattern as x, the corresponding spectra as y and latent
variable as z, we have a VAE loss as [52]:

[ ]
L L L KL q z x P z x

E P x y z

= + = ( | ) ( | )

log ( | , ) , (1)q z x

VAE KL recon

( | )

where the probability density function qϕ(z|x) is the encoder
parameterized by learnable parameters ϕ using a deep neural
network, while Pθ(x|y, z) is the decoder parameterized by
learnable parameters θ using another deep neural network. P
(z|x) is the true posterior distribution of the latent variable z,
which in our case, is simplified to a standard Gaussian dis-
tribution N(0, I) of a dimension of 20. The 20-dimensional
latent space is expressive enough for encoding the 64×64
image, while enabling effective decoding together with the
reflection spectra. The probability density qϕ(z|x) is also
chosen to be an isotropic Gaussian with the same dimension
as P(z|x), whose mean vector and diagonal covariance matrix
are predicted by the encoder network depending on the input
pattern x. Therefore, the VAE loss of our model consists of
the KL divergence loss LKL and the reconstruction loss Lrecon,
which is formulated as the negative log-likelihood of the
reproduced input pattern at the output of the decoder. The KL
divergence loss measures how the encoder-generated dis-
tribution is different from the assumed prior distribution of z,
while the reconstruction loss indicates how accurate the
decoder can replicate the input pattern from its latent code
and corresponding reflection spectra.
To account for the forward prediction ability of the pro-

posed model, we allow the encoder to output the reflection
spectra of the input pattern in addition to the parameters of its
latent distribution. Then another prediction loss, Lpred, is
added to measure the discrepancy of the predicted spectra y
and the ground-truth spectra y by their mean squared error
(MSE).

L y y= ( ) . (2)pred
2

Therefore, the total loss to train the deep learning model is
given by
L L L L= + + , (3)total KL recon pred

where a weight factor α=105 is introduced to balance the
VAE loss and prediction loss. We use convolutional neural
networks (CNN) to construct both the encoder and decoder.
The detailed model architectures are illustrated in
Figure 1(b) and (c). We first create the basic convolution
block, which is composed of three convolution layers with
the kernel size of 1×1, 3×3, and 1×1, respectively, each
followed by a batch-normalization layer before fed to recti-
fied linear unit (Relu) activation. For the encoder network,
the input design pattern passes through alternating layers of
four convolution blocks and three pooling layers to reduce

the size from 64×64 to 8×8. Then a global average pooling
layer converts the feature maps into a vector, before further
processed by two fully connected layers. The first output of
the decoder is mean vector and diagonal covariance matrix of
the latent distribution, each in the size of 20. The second output
of the decoder is the reflection spectra with the size of 61×3.
The architecture of the decoder network follows roughly the
reversed configuration compared with the encoder. The decoder
takes the latent variable, sampled from the 20-dimensional
Gaussian distribution obtained from the encoder, together with
the reflection spectra as input, and gradually increases the
output size to 64×64 by alternating layers of four convolution
blocks and three up-sampling layers.
For each of the eight representative geometries, we use

Monte Carlo sampling to vary the design parameters, and
then perform numerical simulations on the samples to col-
lected 2000 labeled data. The 16000 data in total constitute
our labeled training dataset. Similarly, we also collect 1000
data for each geometry as the test dataset. To introduce the
self-supervised learning into the model, we incorporate a
dynamic data generator in the data loader. During training,
each data in a batch is either randomly sampled from the
labeled dataset or online generated by the dynamic data
generator, with equal probability of 50%. The encoder takes
all the patterns, regardless of their origins, to output the latent
distribution and the predicted spectra. When data flow to the
decoder, the training samples from labeled dataset use the
ground-truth spectra as the input to the decoder, while the
dynamically generated samples use the predicted spectra
from the encoder instead. In other words, for unlabeled data,
the decoder takes the predicted spectra from the encoder as
pseudo-labels. In this way of dealing with unlabeled data, the
model is actually supervised by the encoder of itself. Such
self-supervised learning mechanism is widely studied in
other tasks like image classification, which uses intermediate
output from the model or surrogate tasks as the supervisory
signal [53]. Considering the loss terms in eq. (3), unlabeled
data only contribute to the VAE loss but neglect prediction
loss. In the engineering implementation, when feeding a
batch of training data to the model, we use the encoder
predicted spectra as the fake ground-truth together with the
real ground-truth for labeled data. In this way, the prediction
loss for unlabeled data is always zero during training.
However, as the network weights are shared when VAE loss
and prediction loss back propagate from the decoder to en-
coder, the unlabeled data under such self-supervised learning
configuration can help to improve the overall model per-
formance.

3 Results and discussion

To systematically investigate the function of the proposed
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self-supervised learning mechanism, we make a comparative
study of four different models, namely, the model trained
using only labeled data (U0), the model trained using a fixed
set of unlabeled data with the ratio of total number of un-
labeled data to that of labeled data to be 1:1 (U1) and 4:1
(U4), and the model trained with a dynamic unlabeled data
generator (U_dynamic). During the training process, we use
an initial learning rate of 0.01 and a reduce-on-plateau up-
date strategy. Specifically, if the validation loss no longer
decreases in 10 consecutive epochs, we reduce the learning
rate to 10% of the original one. In addition, we apply an early
stopping strategy to prevent overfitting, which terminate the
training if the validation loss no longer decreases in 20
consecutive epochs. As illustrated in the left panel of Figure
2(a), the total test loss of model U_dynamic is smaller than
that of the other three models, especially with a decrease of
14.4% compared with fully supervised model U0, indicating
that the self-supervised learning indeed helps to improve the
overall performance and generalization ability of the model.

On the right panel of loss evolution over training steps, we
notice that by introducing self-learning mechanism, the loss
drops faster compared with the case of fully supervised
learning. With self-supervised learning using dynamically
generated data, the loss takes more training epochs before
meeting the stop criteria, yielding a smaller loss value at last.
The longer training time is naturally caused by the random
unlabeled data fed to the model, where the stochastic var-
iations of the unlabeled data in each batch force the model to
generalize better and thus converge slower.
In Figure 2(b) and (c), we plot the reconstruction loss and

prediction loss of the four different models. We can observe
that by using unlabeled data, the reconstruction loss is al-
ways smaller than the case that only uses labeled data. This is
because unlabeled data, which provide more similar design
patterns as the labeled dataset but without corresponding
reflection spectra, directly contribute to the reconstruction
loss according to eq. (1). As for the prediction loss, the self-
learning mechanism learns useful information by a weight

Figure 2 (Color online) The total loss (a), reconstruction loss (b), and prediction loss (c) of four models (left), together with the loss evolution with training
epochs (right).
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sharing of the encoder when dealing with labeled and un-
labeled data, so model U_dynamic reduces the prediction
error by 15% compared with model U0.
To get a more concrete picture of how unlabeled data

improve prediction accuracy under the self-supervised
learning scheme, we pick three design patterns from the test
dataset, namely bowtie, ellipse and split ring. As illustrated
in Figure 3, we plot the forward prediction results (hollow
circles) of three test samples by model U0 without self-
supervised learning and model U_dynamic with self-
supervised learning. The ground-truth reflection spectra for
each sample are plotted as solid curves as references. Ob-
viously, by introducing self-supervised learning, model
U_dynamic produces more accurate prediction of the re-
flection spectra from the metasurface, especially around re-
sonance frequencies. This result manifests that during the
training process, unlabeled data without corresponding
ground-truth spectra can still contribute to improving the
accuracy of forward prediction with the aid of self-
supervised learning.
Apart from the decrease in total loss and improvement in

forward prediction accuracy, the benefit of introducing self-
supervised learning can also be verified by checking the
structure of the latent space. Through the encoding process,
the nanophotonic structural design is compressed into a 20-
dimensional latent space, which is expected to contain useful
information about the meta-atom. To visualize the latent
space, we use t-distributed stochastic neighbor embedding (t-
SNE) method to reduce the dimension to 2 while keeping the

relative spatial relationship among data. In Figure 4(a) and
(b), we plot the 2D distribution of the test data from the eight
geometry groups (i.e., arc, bowtie, cross, split ring, H-shape,
rectangle, L-shape and ellipse), encoded by model U0 and
model U_dynamic, respectively. In both cases, the designs
are clearly separated into eight clusters according to the
design geometries in training dataset. Although no labels for
the geometries are provided during training, the models can
automatically learn to distinguish the eight geometries
through the encoding-decoding process. However, the clus-
tering effect of model U_dynamic is apparently better than
that of model U0, with smaller intra-class variations and
larger inter-class gaps. The better clustering results confirm
that, aided with self-supervised learning, the model can
discover more intricate features among different geometries
and separate them further apart into isolated clusters. It is
noteworthy that the encoder does not take any information
about geometry classes as input, and the clustering is merely
a result of the probabilistic learning procedure. So not sur-
prisingly, similar geometries may have a large portion of
overlap in the latent space, such as bowtie and H-shape in
Figure 4(b).
To test the inverse design ability of the proposed model, we

use the decoder of model U_dynamic to produce possible
designs with given requirements in a probabilistically gen-
erative manner. In this way, we can get multiple retrieved
designs from the same given requirements in the reflection
spectra, thus solving the one-to-many mapping issue in
photonic designs that is intractable for a deterministic model.

Figure 3 (Color online) Forward prediction of three samples, bowtie (a), ellipse (b) and split ring (c) from the test dataset. Top panels show the prediction
without self-supervised learning (model U0) and bottom panels show the prediction with self-supervised learning (model U_dynamic).
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Specifically, according to the training configuration, we first
sample a 20-dimensional latent variable from a standard
Gaussian prior distribution, P(z)~N(0, I), and then feed the
latent variable together with the required reflection spectra to
the decoder of the model.
Since there is a discrepancy between the true latent dis-

tribution and the standard Gaussian prior, as described by the
KL-divergence in eq. (1), we use the encoder to filter the
retrieved patterns to guarantee the inverse design accuracy.
Specifically, a mean-squared-error threshold of 10−3 is uti-
lized to check the required spectra and the predicted spectra
by feeding the generated design patterns back to the encoder,
where the retrieved designs with error lower than this
threshold are kept. We provide five retrieval results in Figure
5(b)-(f), with the required reflection spectra from a H-shape

structure in the test dataset presented in Figure 5(a). From the
simulated spectra in Figure 5(b)-(f), we can clearly see that
the retrieved design patterns, albeit in very different geo-
metries as shown in the insets, reproduce the corresponding
input reflection spectra with high fidelity. These results un-
ambiguously prove that the proposed U_dynamic model with
self-learning can effectively link the nanophotonic structures
and their corresponding optical responses through the
probabilistic representation in the latent space.

4 Conclusions

To conclude, we propose a self-supervised learning me-
chanism to improve the performance of deep learning

Figure 4 (Color online) Visualization of the latent space by reducing the dimension from 20 to 2 using t-SNE. The distribution of the nanophotonic
structures from test dataset encoded by model U0 (a) and model U_dynamic (b), respectively.

Figure 5 (Color online) Inverse design by the U_dynamic model. (a) Required spectra and the ground-truth design. (b)-(f) Retrieved designs and their
corresponding reflection spectra.
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models for nanophotonic structure designs. The deep learn-
ing model is composed of an encoder that compresses design
patterns into a latent space, from which the patterns are re-
constructed by another decoder together with corresponding
reflection spectra. The self-supervised learning strategy al-
lows generating random unlabeled data online during train-
ing, and the missing reflection spectra are replaced by the
encoder output. In this way, the model performance is sig-
nificantly improved in terms of total loss, prediction accu-
racy and latent space structure. The demonstrated deep
learning model would serve as a very useful tool to design,
characterize and optimize nanophotonic structures, which
will find practical applications in building nanophotonic
devices and systems for imaging, sensing and information
processing. Moreover, the proposed self-learning strategy is
flexible and widely applicable, which can be adapted to
construct other data-efficient deep learning models for other
research fields like physics and materials science, especially
when it is difficult or expensive to collect labeled data.

This work was supported by the National Science Foundation (Grant No.
ECCS-1916839).
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